Alternative polyadenylation and differential expression of Shank mRNAs in the synaptic neuropil.
نویسندگان
چکیده
The stability and dynamics of synapses rely on tight regulation of the synaptic proteome. Shank proteins, encoded by the three genes Shank1, Shank2 and Shank3 are scaffold molecules in the postsynaptic density of excitatory neurons that contribute to activity-dependent neuronal signalling. Mutations in the Shank genes are associated with neurological diseases. Using state-of-the-art technologies, we investigated the levels of expression of the Shank family messenger RNAs (mRNAs) within the synaptic neuropil of the rat hippocampus. We detected all three Shank transcripts in the neuropil of CA1 pyramidal neurons. We found Shank1 to be the most abundantly expressed among the three Shank mRNA homologues. We also examined the turnover of Shank mRNAs and predict the half-lives of Shank1, Shank2 and Shank3 mRNAs to be 18-28 h. Using 3'-end sequencing, we identified novel 3' ends for the Shank1 and Shank2 3' untranslated regions (3' UTRs) that may contribute to the diversity of alternative polyadenylation (APA) for the Shank transcripts. Our findings consolidate the view that the Shank molecules play a central role at the postsynaptic density. This study may shed light on synaptopathologies associated with disruption of local protein synthesis, perhaps linked to mutations in mRNA 3' UTRs or inappropriate 3' end processing.
منابع مشابه
Alternative poly(A) site selection in complex transcription units: means to an end?
Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in whi...
متن کاملThe Local Transcriptome in the Synaptic Neuropil Revealed by Deep Sequencing and High-Resolution Imaging
In neurons, dendritic protein synthesis is required for many forms of long-term synaptic plasticity. The population of mRNAs that are localized to dendrites, however, remains sparsely identified. Here, we use deep sequencing to identify the mRNAs resident in the synaptic neuropil in the hippocampus. Analysis of a neuropil data set yielded a list of 8,379 transcripts of which 2,550 are localized...
متن کاملAlternative Polyadenylation of mRNAs: 3′-Untranslated Region Matters in Gene Expression
Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3' untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correl...
متن کاملVertebrate GLD2 poly(A) polymerases in the germline and the brain.
Cytoplasmic polyadenylation is important in the control of mRNA stability and translation, and for early animal development and synaptic plasticity. Here, we focus on vertebrate poly(A) polymerases that are members of the recently described GLD2 family. We identify and characterize two closely related GLD2 proteins in Xenopus oocytes, and show that they possess PAP activity in vivo and in vitro...
متن کاملSignals, Synapses, and Synthesis: How New Proteins Control Plasticity
Localization of mRNAs to dendrites and local protein synthesis afford spatial and temporal regulation of gene expression and endow synapses with the capacity to autonomously alter their structure and function. Emerging evidence indicates that RNA binding proteins, ribosomes, translation factors and mRNAs encoding proteins critical to synaptic structure and function localize to neuronal processe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 369 1633 شماره
صفحات -
تاریخ انتشار 2014